Reward-Risk Portfolio Selection and Stochastic Dominance

نویسنده

  • Enrico De Giorgi
چکیده

The portfolio selection problem is traditionally modelled by two different approaches. The first one is based on an axiomatic model of risk-averse preferences, where decision makers are assumed to possess an expected utility function and the portfolio choice consists in maximizing the expected utility over the set of feasible portfolios. The second approach, first proposed by Markowitz (1952), is very intuitive and reduces the portfolio choice to a set of two criteria, reward and risk, with possible tradeoff analysis. Usually the reward-risk model is not consistent with the first approach, even when the decision is independent from the specific form of the risk-averse expected utility function, i.e. when one investment dominates another one by second order stochastic dominance. In this paper we generalize the reward-risk model for portfolio selection. We define reward measures and risk measures by giving a set of properties these measures should satisfy. One of these properties will be the consistency with second order stochastic dominance, to obtain a link with the expected utility portfolio selection. We characterize reward and risk measures and we discuss the implication for portfolio selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Order Stochastic Dominance , Reward - Risk Portfolio Selection and the CAPM

Starting from the reward-risk model for portfolio selection introduced in De Giorgi (2004), we derive the reward-risk Capital Asset Pricing Model (CAPM) analogously to the classical mean-variance CAPM. The reward-risk portfolio selection arises from an axiomatic definition of reward and risk measures based on few basic principles, including consistency with second order stochastic dominance. Wi...

متن کامل

Outperformance Testing of a Dynamic Assets Portfolio Selection Supplemented with a Continuous Paths Levy Process

This study aims at getting a better performance for optimal stock portfolios by modeling stocks prices dynamics through a continuous paths Levy process. To this end, the share prices are simulated using a multi-dimensional geometric Brownian motion model. Then, we use the results to form the optimal portfolio by maximizing the Sharpe ratio and comparing the findings with the outputs of the conv...

متن کامل

Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange

Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...

متن کامل

Multi-period project portfolio selection under risk considerations and stochastic income

This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, con...

متن کامل

Stochastic Dominance-Constrained Markov Decision Processes

We are interested in risk constraints for infinite horizon discrete time Markov decision processes (MDPs). Starting with average reward MDPs, we show that increasing concave stochastic dominance constraints on the empirical distribution of reward lead to linear constraints on occupation measures. An optimal policy for the resulting class of dominance-constrained MDPs is obtained by solving a li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002